Communication Lower Bounds of Collision Problems via Density
 Increment Arguments

Guangxu Yang Jiapeng Zhang

USCUniversity of
Southern California

Outline

- Collision problems and motivations
- Motivations and previous results
- Our contribution and applications
- Proof Outline

Collision Problems

Collision Problems(query version)

On input $z=\left(z_{1}, \ldots, z_{M}\right) \in[N]^{M}(M=2 N)$ the goal is to output a collision, that is, a pair of distinct indices $i, j \in[M]$ such that $z_{i}=z_{j}$.

It has been studied exhaustively in quantum query complexity and cryptography [BHT98,BSMP9I,Aar02]
We note that since $M=2 N$, there must exist a collision.

Natural two-party communication version :
Alice holds the first half of the bits of each z_{i} and Bob holds the second half of each z_{i}.

Collision Problems

Let $M=2 N$, Alice holds $\mathrm{x}=\left(x_{1}, \ldots, x_{M}\right) \in[\sqrt{ } N]^{M}$ and Bob holds $\mathrm{y}=\left(y_{1}, \ldots, y_{M}\right) \in$ $[\sqrt{ } N]^{M}$. The goal is find a collision, that is, distinct $i, j \in[M]$ such that $x_{i} y_{i}=x_{j} y_{j}$.

Motivations

Motivation from Cryptography: Multi-set double-intersection problem

```
Bauer, Farshim and Mazaheri (CRYPTO 20I8)
Collision-resistance of combiners for backdoored random oracles.

Motivation from Proof Complexity: Bit-pigeonhole principle problem (BPHP)

Hrubes and Pudlak (FOCS 2017), Göös and Jain (RANDOM 2022) and Itsykson and Riazanov (CCC 202I)

Some proof system requires exponential size to refute BPHP can be exponential size.
Lifting theorems

\section*{A Simple Protocol}

Collision Problems (uniform distribution)
Let \(M=2 N\), Alice holds \(\mathrm{x}=\left(x_{1}, \ldots, x_{M}\right) \in[\sqrt{ } N]^{M}\) and Bob holds \(\mathrm{y}=\left(y_{1}, \ldots, y_{M}\right) \in\) \([\sqrt{N}]^{M}\). the goal is find a collision, that is, distinct \(i, j \in[M]\) such that \(x_{i} y_{i}=x_{j} y_{j}\).

A Simple Protocol:
I. Alice randomly chooses \(N^{1 / 4}\) coordinates with the same value and sends to Bob.
2. Bob can find a collision with high probability by the birthday paradox argument.

\section*{Proof by Birthday Paradox}

Collision Problems (uniform distribution)
Let \(M>N\), Alice holds \(\mathrm{x}=\left(x_{1}, \ldots, x_{M}\right) \in[\sqrt{ } N]^{M}\) and Bob holds \(\mathrm{y}=\left(y_{1}, \ldots, y_{M}\right) \in\) \([\sqrt{ } N]^{M}\). the goal is find a collision, that is, distinct \(i, j \in[M]\) such that \(x_{i} y_{i}=x_{j} y_{j}\).


If \(|\mathrm{S}|=N^{1 / 4}, \operatorname{Pr}\left[\exists i, j \in S, y_{i}=y_{j}\right]=\Omega(1)\) birthday paradox argument.

\section*{Previous Lower bounds:}

\section*{Conjecture [BFMI8,IR2I,GJ22]}

The communication lower bound of collision problem is \(\Omega\left(N^{1 / 4}\right)\)

\section*{Göös and Jain (RANDOM 2022)}

The communication lower bound of collision problem is \(\Omega\left(N^{1 / 12}\right)\)

Their approach(Lifting theorem):
- Proving \(\Omega\left(N^{1 / 3}\right)\) communication lower bound of \(\mathrm{Col} \circ\) Ver via degree to rank lifting.
- Builds on lower bound of Col \(\circ\) Ver , [GJ22] proves an \(\Omega\left(N^{1 / 12}\right)\) lower bound for BPHP via reductions.

Since there is a loss in the reduction [G]22], the limitation of their framework is an \(\Omega\left(N^{1 / 8}\right)\) lower bound.

\section*{Our Contribution}

\section*{Main Theorem}

The communication lower bound of the collision problem is \(\Omega\left(N^{1 / 4}\right)\).

The protocol based on birthday paradox is almost optimal.

\section*{Technical Contribution:}

I, Using density-restoring partition [GLM+16,GPWI7] for non-lifted functions. \(f\left(g\left(x_{1}, y_{1}\right), \ldots, g\left(x_{n}, y_{n}\right)\right)\)
2, Bypass the barriers by using the information complexity and lifting techniques.

\section*{Applications in cryptography and proof complexity}

Bauer, Farshim and Mazaheri (CRYPTO 2018)

Collision-resistance of combiners for backdoored random oracles

Hrubes and Pudlak (FOCS 2017)

Every tree-like cutting planes of the weak bit pigeon hole principle BPHP , \(M>N\), has size \(2^{\Omega\left(N^{1 / 4}\right)}\).

Göös and Jain (RANDOM 2022) and Itsykson and Riazanov (CCC 202I)

Any proof system that can be efficiently simulated by randomized protocols (most notably, tree-like Res \((\oplus)\) )
requires exponential size to refute bit-pigeonhole formulas featuring \(M\) pigeons and \(N\) holes for arbitrary \(M>N\).

\section*{Proof Outline}

\section*{Baby version: One way communication}
Send a messgae \(C\)
\(\mathrm{x}=\left(x_{1}, \ldots, x_{M}\right) \in[\sqrt{ } N]^{M}\)
\[
\mathrm{y}=\left(y_{1}, \ldots, y_{M}\right) \in[\sqrt{ } N]^{M}
\]

Bob outputs the collision \(i, j \in[M]\) such that \(x_{i} y_{i}=x_{j} y_{j}\)

Theorem I

The one-way communication lower bound of the collision problem is \(\Omega\left(N^{1 / 4}\right)\).

\section*{Review: A Simple Protocol by Birthday Paradox}

\section*{Collision Problems (uniform distribution)}

Let \(M>N\), Alice holds \(\mathrm{x}=\left(x_{1}, \ldots, x_{M}\right) \in[\sqrt{ } N]^{M}\) and Bob holds \(\mathrm{y}=\left(y_{1}, \ldots, y_{M}\right) \in\) \([\sqrt{ } N]^{M}\). the goal is find a collision, that is, distinct \(i, j \in[M]\) such that \(x_{i} y_{i}=x_{j} y_{j}\).


\section*{Intuition: Normalize any protocol.}

If Alice sends \(N^{1 / 4}\) coordinates with same values:


Structured sets
Let \(X\) be the random variable on inputs of Alice condition on message \(C\).
There is a partition \(X=\bigcup_{i} X^{i}\) such that for each \(i, X^{i}\) is a structured set and the expected size of fixed part is \(O(|C|)\).

\section*{Intuition: One way communication}


Send \(C\) with \(|\mathrm{C}|=\mathrm{o}\left(N^{1 / 4}\right)\)

Let \(X\) be the random variable on inputs of Alice condition on message \(C\).
There is a partition \(X=\bigcup_{i} X^{i}\) such that for each \(i, X^{i}\) is a structured set and the expected size of fixed part is \(o\left(N^{1 / 4}\right)\).


By birthday paradox, Bob can't find the collision with high probability for each \(X^{i}\).

How to achieve such partition ?
Structured sets

\section*{Density-Restoring partition \({ }^{\text {Fixed }}\)}

Dense distribution [GLM+16]
Let \(\boldsymbol{D}\) be a random variable on \([\sqrt{ } N]^{M}\). We say that \(\boldsymbol{D}\) is dense on \(J\) if for every subset \(I \subseteq J\) it holds that
\[
\mathrm{H}_{\infty}\left(\boldsymbol{D}_{I}\right) \geq \gamma \cdot|I| \cdot \log \sqrt{N}
\]
and there is a \(\alpha \in[\sqrt{ } N]^{[M] \backslash J}\) such that \(\operatorname{Pr}\left[\boldsymbol{D}_{[M] \backslash J}=\alpha\right]=1\).
Set \(\gamma=1-\frac{1}{\log \sqrt{ } N}\)
\begin{tabular}{|c|}
\hline Lemma \(\mathrm{I}[\mathrm{GLM}+\mid 6, \mathrm{GPWI} 7]\) \\
Density function of \(X \subseteq[\sqrt{N}]^{J}: D_{\infty}(X)=|J| \cdot \log \sqrt{N}-H_{\infty}(X)\) \\
For any \(X \subseteq\left[\sqrt{N}^{J}\right.\), there is a partition \(X=U_{i} X^{i}\) such that for each \(i\), \\
- \(X_{I_{i}}^{i}=\alpha_{i}\) and \(X^{i}\) is dense on \(\mathrm{J} \backslash I_{i}\). \\
- \(D_{\infty}\left(X_{\backslash \backslash I_{i}}^{i}\right) \leq D_{\infty}(X)-\left|I_{i}\right|+\delta_{i}\) where \(\delta_{i}=\log \frac{|X|}{\left|\mathrm{U}_{j \geq i} X^{j}\right|}\)
\end{tabular}

\section*{Density-Restoring Partition}

Lemma I [GLM+I6,GPWI7]
For any \(X \subseteq[\sqrt{N}]^{J}\), there is a partition \(X=\bigcup_{i} X^{i}\) such that for each \(i\),
- There is a \(I_{i} \subseteq J\) and \(\alpha_{i} \in[\sqrt{N}]^{I_{i}}\) such that \(X_{I_{i}}^{i}=\alpha_{i}\) and \(X^{i}\) is dense on \(J \backslash I_{i}\).
- \(D_{\infty}\left(X_{J \backslash I_{i}}^{i}\right) \leq D_{\infty}(X)-\left|I_{i}\right|+\delta_{i}\) where \(\delta_{i}=\log \frac{|X|}{\mid U_{j \geq i}^{X^{j} \mid}}\)

\section*{Density Restoring Partition:}
1. While \(X \neq \varnothing\) :
2. Initialize \(i=1\).
3. Let \(I \subseteq J\) be a maximal subset (possibly \(I=\emptyset\) ) such that \(X_{I}\) has min-entropy rate \(\gamma\) and let \(\alpha_{i} \in\) \([\sqrt{ } N]^{I}\) be an outcome witnessing this: \(\operatorname{Pr}\left[X_{I}=\alpha_{i}\right]>\sqrt{ } N^{-\gamma|I|}\).
4. Output \(X^{i}:=\left\{x \in X: x_{I}=\alpha_{i}\right\}\) and \(I_{i}=I\).
5. Update \(X \leftarrow X \backslash X^{i}\) and \(\mathrm{J}=J \backslash I\).


\section*{Proof of Lemma I}

Lemma I [GLM+16,GPWI7]
For any \(X \subseteq[\sqrt{N}]^{J}\), there is a partition \(X=\bigcup_{i} X^{i}\) such that for each \(i\),
- There is a \(I_{i} \subseteq J\) and \(\alpha_{i} \in[\sqrt{N}]^{I_{i}}\) such that \(X_{I_{i}}^{i}=\alpha_{i}\) and \(X^{i}\) is dense on \(J \backslash I_{i}\).
- \(D_{\infty}\left(X_{J \backslash I_{i}}^{i}\right) \leq D_{\infty}(X)-\left|I_{i}\right|+\delta_{i}\) where \(\delta_{i}=\log \frac{|X|}{\left|\mathrm{U}_{j \geq i} X^{j}\right|}\)

\section*{Proof outline: The first part is proved by contradiction.}

If \(X^{i}\) is not dense on \(J \backslash I_{i}\), then there is a non-empty set \(K \subseteq J \backslash I_{i}\) and an outcome \(\beta \in[\sqrt{ } N]^{\wedge} K\)
violating the min-entropy condition.
Thus, the set \(I_{i} \cup K \subseteq J\) and \(\left(\alpha_{i}, \beta\right)\) violating the min-entropy condition this contradicts the maximality of \(I_{i}\).

\section*{Proof of Lemma I}
\begin{tabular}{|l|l|}
\hline Lemma \(\mathrm{I}[\mathrm{GLM}+\mid 6, \mathrm{GPWI} 7]\) & Density function of \(X \subseteq[\sqrt{N}]^{J}: D_{\infty}(X)=|J| \cdot \log \sqrt{N}-H_{\infty}(X)\) \\
\hline For any \(X \subseteq\left[{\sqrt{N}]^{J}}^{\prime}\right.\), there is a partition \(X=U_{i} X^{i}\) such that for each \(i\), \\
- There is a \(I_{i} \subseteq J\) and \(\alpha_{i} \in[\sqrt{N}]^{I_{i}}\) such that \(X_{I_{i}}^{i}=\alpha_{i}\) and \(X^{i}\) is dense on \(J \backslash I_{i}\). \\
- \(D_{\infty}\left(X_{J \backslash I_{i}}^{i}\right) \leq D_{\infty}(X)-\left|I_{i}\right|+\delta_{i}\) where \(\delta_{i}=\log \frac{|X|}{\left|U_{j \geq i} X^{j}\right|}\)
\end{tabular}

Proof outline: The second part is proved by straightforward calculation:
\[
\begin{aligned}
D_{\infty}\left(X_{J \backslash I_{i}}^{i}\right) & =\left|J \backslash I_{i}\right| \log \sqrt{N}-\log \left|X^{i}\right| \\
& \leq\left(|J| \log \sqrt{N}-\left|I_{i}\right| \log \sqrt{ } N\right)-\log \left(\left|\cup_{j \geq i} X^{j}\right| \cdot \sqrt{N}^{-\gamma\left|I_{i}\right|}\right) \\
& =(|J| \log \sqrt{N}-\log |X|)-(1-\gamma)\left|I_{i}\right| \cdot \log \sqrt{N}+\log \left(|X| /\left|\mathrm{U}_{j \geq i} X^{j}\right|\right) \quad\left(\gamma=1-\frac{1}{\log \sqrt{N}}\right) \\
& \leq D_{\infty}(X)-\left|I_{i}\right|+\delta_{i}
\end{aligned}
\]

\section*{Proof of one way communication lower bound}

Lemma I [GLM+16,GPWI7]
Density function of \(X \subseteq[\sqrt{N}]^{J}: D_{\infty}(X)=|J| \cdot \log \sqrt{N}-H_{\infty}(X)\)
For any \(X \subseteq[\sqrt{N}]^{J}\), there is a partition \(X=U_{i} X^{i}\) such that for each \(i\),
- There is a \(I_{i} \subseteq J\) and \(\alpha_{i} \in[\sqrt{N}]^{I_{i}}\) such that \(X_{I_{i}}^{i}=\alpha_{i}\) and \(X^{i}\) is dense on \(J \backslash I_{i}\).
- \(D_{\infty}\left(X_{J \backslash I_{i}}^{i}\right) \leq D_{\infty}(X)-\left|I_{i}\right|+\delta_{i}\) where \(\delta_{i}=\log \frac{|X|}{\left|U_{j \geq i} X^{j}\right|}\)

Moreover, let \(J=[M]\) and \(p_{i}=\frac{\left|X^{i}\right|}{|X|}\) denote the probability of set \(X^{i}\),
\[
\begin{gathered}
E\left[\delta_{i}\right]=\sum_{i} p_{i} \cdot \log \frac{|X|}{\left|\bigcup_{j \geq i} X^{j}\right|}=\sum_{i} p_{i} \cdot \log \frac{1}{\sum_{j \geq i} p_{j}} \leq \int_{0}^{1} \log \frac{1}{x} d x=1 \\
E\left[\left|I_{i}\right|\right] \leq D_{\infty}(X)-E\left[D_{\infty}\left(X_{J \backslash I_{i}}^{i}\right)\right]+E\left[\delta_{i}\right] \leq D_{\infty}(X)+E\left[\delta_{i}\right] \leq M \cdot \log \sqrt{ } N-H_{\infty}(X)+1 \\
\uparrow \\
\quad E\left[D_{\infty}\left(X_{J \backslash I_{i}}^{i}\right)\right] \geq 0 \quad E\left[\delta_{i}\right] \leq 1
\end{gathered}
\]

\section*{Proof of one way communication lower bound 20}


By Lemma I, \(E\left[\left|I_{i}\right|\right] \leq M \cdot \log \sqrt{N}-H_{\infty}(X)+1=M \cdot \log \sqrt{N}-\log |X|+1\)

By birthday paradox, if Bob can find collision with high probability in \(X\), then \(E\left[I_{i}\right]=\Omega\left(N^{1 / 4}\right)\).
\[
|X| \leq \frac{(\sqrt{N})^{M}}{2^{\Omega\left(N^{1 / 4}\right)}}
\]

Two way communication lower bound ?

\section*{Two way communication lower bound}


Partition of Truth Table

\(\Pi\) induces a partition of the truth table into at most \(2^{|\Pi|}\) leaf rectangles.
The leaf rectangles are in I-to-I correspondence with the leaves of the protocol tree.

\section*{Decomposition Algorithm}

Our decomposition algorithm has two process in each communication round:

- Density-Restoring partition:

We further decompose the rectangle of each node into dense rectangles ( \(X\) is dense on \(J_{1}\) and \(Y\) is dense on \(J_{2}\) ).

- Labeling process:

Labeling the inputs in each dense rectangle that Alice or Bob can find the collision.

Claim: The total probability of labeled inputs should be \(\Omega(1)\) if Alice or Bob can find the collision with high probability.


\section*{Density-Restoring Partition (Alice speaks)}


Alice speaks, \(X_{0}=X \cup X^{*}\)

\(Y\) is dense on \(J_{2}\)

\(Y\) is dense on \(J_{2}\) and \(X^{i}\) is dense on \(J_{1} \backslash I_{i}\)

\section*{Lemma I [GLM+16,GPWI7]}

For any \(X \subseteq[\sqrt{N}]^{J_{1}}\), there is a partition \(X=\cup_{i} X^{i}\) such that for each \(i\),
- \(X_{I_{i}}^{i}=\alpha_{i}\) and \(X^{i}\) is dense on \(\mathrm{J}_{1} \backslash I_{i}\).
- \(D_{\infty}\left(X_{J_{1} \backslash I_{i}}^{i}\right) \leq D_{\infty}(X)-\left|I_{i}\right|+\delta_{i}\) where \(\delta_{i}=\log \frac{|X|}{\left|U_{j \geq i} X^{j}\right|}\)

\section*{Labeling Process(Alice speaks)}


\(Y\) is dense on \(J_{2}\) and \(X^{i}\) is dense on \(J \backslash I_{i}\)


We define \(Y^{i}=\left\{y \in Y: y_{i}=y_{j}\right.\) for some \(i, j \in I_{i} \cup J_{1}^{c}\) with \(\left.s_{i}^{i}=s_{j}^{i}\right\}\)
The inputs of Bob that can find the collision in fixed part of
Labeling the inputs in the rectangle \(X^{i} \times Y^{i}\) if it don't be labeled in previous rounds. Alice.

\section*{Proof of Lemma 2}

Lemma 2

In the labeling process, for each \(i\), the probability of labeled inputs in \(X^{i} \times Y\) is at most \(\frac{2 \cdot\left(\left|I_{i} \cup J^{c}\right|^{2}-\left|J^{c}\right|^{2}\right)}{\sqrt{N}}\)


We only consider the case: \(J^{c} \cup I_{i} \subseteq J_{2}\)
If \(J^{c} \cup I_{i} \cap J_{2}^{c} \neq \emptyset\),
- Either there is no collision in \(J^{c} \cup I_{i} \cap J_{2}^{c}\)
- Or if there is a collision in \(J^{c} \cup I_{i} \cap J_{2}^{c}\), there inputs must be labeled in previous rounds.

\section*{Proof of Lemma 2}

Lemma 2

In the labeling process, for each \(i\), the probability of labeled inputs in \(X^{i} \times Y\) is at most \(\frac{2 \cdot\left(\left|I_{i} \cup J^{c}\right|^{2}-\left|J^{c}\right|^{2}\right)}{\sqrt{N}}\)

\section*{Proof outline:}

For any \((i, j) \in I_{i} \cup J_{1}^{c}\) with \(s_{i}^{i}=s_{j}^{i}, \quad\) since \(i, j \in J_{2}\) and \(Y\) is dense on \(J_{2}\)
\[
\operatorname{Pr}\left[y_{i}=y_{j}\right] \leq \frac{2}{\sqrt{N}}
\]

The lemma 2 holds by union bound.

\section*{Decomposition Algorithm}

Assume Alice speaks,

In each communication iteration, for each dense rectangle \(X \times Y\) is decomposed into \(X_{0} \times Y\) and \(X_{1} \times Y\).

Doing density-restoring partition on \(X_{0}\) and \(X_{1}\) to further decompose \(X_{0} \times Y\) and \(X_{1} \times Y\) into dense rectangles.

Labeling the inputs in dense rectangles.
- Lemma 3: The expected size of fixed coordinates in leaf rectangles is at most \(\mathrm{O}(\mathrm{CC}(\Pi))\).
- Lemma 4: If the expected size of fixed coordinates in leaf rectangles is o \(\left(N^{\frac{1}{4}}\right)\), Alice or Bob can find the collision with \(o(1)\) probability.

\section*{Proof of Lemma 3}

Lemma 3: The expected size of fixed coordinates in leaf rectangles is at most \(O(C C(\Pi))\).

\section*{Proof outline via density increment argument:}

Density function is the average of density function of current all dense rectangles.

Density function is 0 at the beginning of protocol tree.

In each communication round, the density function increase at most 1.

By Lemma I, in the density-restoring partition, for each \(i\)
\[
E\left[D_{\infty}\left(X_{J \backslash I_{i}}^{i}\right)\right] \leq E\left[D_{\infty}(X)\right]-E\left[\left|I_{i}\right|\right\}+E\left[\delta_{i}\right]
\]

the density function decreases at least \(E\left[\left|I_{i}\right|\right]-E\left[\delta_{i}\right] \leq E_{i}\left[\left|I_{i}\right|\right]-1\).

Since the density function is always non-negative, the expected size of fixed coordinates \(=\sum E\left[\left|I_{i}\right|\right] \leq 2 \cdot C C(\Pi)\)

\section*{Proof of Lemma 4}

Lemma 4: If the expected size of fixed coordinates in leaf rectangles is o \(\left(N^{\frac{1}{4}}\right)\), then Alice or Bob can find the collision with \(o(1)\) probability.

\section*{Proof outline:}

Claim: the total probability of labeled inputs should be \(\Omega(1)\) if Alice or Bob can find the collision with high probability.
By Lemma 2, in each labeling process,
the probability of labeled inputs increase at most \(\mathrm{E}\left[\frac{2 \cdot\left(\left|I_{i} \cup J^{c}\right|^{2}-\left|J^{c}\right|^{2}\right)}{\sqrt{N}}\right] . \quad \mathrm{E}\left[\min \left\{1, \frac{2 \cdot\left(\left|I_{i} \cup J^{c}\right|^{2}-\left|J^{c}\right|^{2}\right)}{\sqrt{N}}\right\}\right]\).

Thus, let \(J_{1}\) and \(J_{2}\) be the random variables on fixed coordinates of Alice and Bob's sides. Taking summation in all communication rounds, the total probability of labeled inputs is at most \(E\left[\frac{2 \cdot\left(\left|J_{1}^{c}\right|^{2}+\left|J_{2}^{c}\right|^{2}\right)}{\sqrt{N})}\right]\).
\[
\mathrm{E}\left[\frac{2 \cdot\left(\left|J_{1}^{c}\right|^{2}+\left|J_{2}^{c}\right|^{2}\right)}{\sqrt{N}}\right]=\Omega(1) . \quad \mathrm{E}\left[\operatorname { m i n } \left\{2, \frac{\left.2 \cdot\left(\left|J_{1}^{c}\right|^{2}+\mid J_{\left.\left.J^{c}\right|^{2}\right)}^{\sqrt{N}}\right\}\right]=\Omega(1) . . . . . . .}{}\right.\right.
\]

\section*{Summary and Proof Outline}

Main Theorem

The communication lower bound of the collision problem is \(\Omega\left(N^{1 / 4}\right)\).

The proof outline is as follows:
Decomposition Algorithm: In each communication iteration, do density-restoring partition and labeling process for each dense rectangle.

Lemma 3: The expected size of fixed coordinates in leaf rectangles is at most \(\mathrm{O}(\mathrm{CC}(\Pi))\)
Proved by density increment arguments.

Lemma 4: The expected size of fixed coordinates in leaf rectangles is at least \(\Omega\left(N^{\frac{1}{4}}\right)\).
Proved by birthday paradox argument.

\section*{Other Applications and Open Problems}

Main Theorem

The communication lower bound of the collision problem is \(\Omega\left(N^{1 / 4}\right)\).

Numbers on forehead model?

This result will have important applications in proof complexity.

\section*{Thank you for listening \(\odot\)}```

