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• Motivations and previous results

• Our contribution and applications

• Proof Outline



Collision Problems 3

Let 𝑀 = 2𝑁,Alice holds x = 𝑥!, … , 𝑥" ∈ √𝑁
"

and Bob holds y = 𝑦!, … , 𝑦" ∈
√𝑁

"
.The goal is find a collision, that is, distinct  𝑖, 𝑗 ∈ 𝑀 such that 𝑥#𝑦# = 𝑥$𝑦$ .

Collision Problems

We note that since 𝑀 = 2𝑁 , there must exist a collision.

On input 𝑧 = 𝑧!, … , 𝑧" ∈ 𝑁 " (𝑀 = 2𝑁) the goal is to output a collision, that is, a pair 
of distinct indices 𝑖, 𝑗 ∈ 𝑀 such that 𝑧# = 𝑧$ .

Collision Problems( query version)

It has been studied exhaustively in quantum query complexity and cryptography [BHT98,BSMP91,Aar02]

Natural two-party communication version :

Alice holds the first half of the bits of each z# and Bob holds the second half of each z# .



Motivations 4

Bauer, Farshim and Mazaheri (CRYPTO 2018)

Collision-resistance of combiners for backdoored random oracles.

Some proof system requires exponential size to refute BPHP can be exponential size.

Hrubes and Pudlak (FOCS 2017), Göös and Jain (RANDOM 2022) and Itsykson and Riazanov (CCC 2021)

Motivation from Cryptography: Multi-set double-intersection problem

Motivation from Proof Complexity: Bit-pigeonhole principle problem (BPHP)

Information complexity

Lifting theorems



A Simple Protocol 5

Let 𝑀 = 2𝑁,Alice holds x = 𝑥!, … , 𝑥" ∈ √𝑁
"

and Bob holds y = 𝑦!, … , 𝑦" ∈
√𝑁

"
. the goal is find a collision, that is, distinct  𝑖, 𝑗 ∈ 𝑀 such that 𝑥#𝑦# = 𝑥$𝑦$ .

Collision Problems (uniform distribution)

1. Alice randomly chooses 𝑁!/& coordinates with the same value and sends to Bob.

2. Bob can find a collision with high probability by the birthday paradox argument.

A Simple Protocol:



Proof by Birthday Paradox 6

Let 𝑀 > 𝑁,Alice holds x = 𝑥!, … , 𝑥" ∈ √𝑁
"

and Bob holds y = 𝑦!, … , 𝑦" ∈
√𝑁

"
. the goal is find a collision, that is, distinct  𝑖, 𝑗 ∈ 𝑀 such that 𝑥#𝑦# = 𝑥$𝑦$ .

Collision Problems (uniform distribution)

1 1 1 1

Uniform Distribution

𝑥# = 𝑥$ for any 𝑖, 𝑗 ∈ 𝑆

If S = 𝑁!/&, Pr ∃ 𝑖, 𝑗 ∈ 𝑆, 𝑦# = 𝑦$ = Ω(1) birthday paradox argument.

Alice

Bob

𝑆

𝑆

The value of each coordinate
uniformly sampled from 𝑁 .



Previous Lower bounds: 7

The communication lower bound of collision problem is Ω(𝑁!/!')

Göös and Jain (RANDOM 2022)

Their approach(Lifting theorem):

• Proving Ω(𝑁!/() communication lower bound of 𝐶𝑜𝑙 ∘ 𝑉𝑒𝑟 via degree to rank lifting.

• Builds on lower bound of Col ◦Ver , [GJ22] proves an Ω(𝑁!/!') lower bound for BPHP via reductions. 

Since there is a loss in the reduction [GJ22], the limitation of their framework is an Ω(𝑁!/)) lower bound.

The communication lower bound of collision problem is Ω(𝑁!/&)

Conjecture [BFM18,IR21,GJ22]



Our Contribution 8

Main Theorem

The communication lower bound of the collision problem is Ω(𝑁!/&).

Technical Contribution:

1、Using density-restoring partition [GLM+16,GPW17] for non-lifted functions.

2、Bypass the barriers by using the information complexity and lifting techniques.

The protocol based on birthday paradox is almost optimal.

𝑓(𝑔 𝑥!, 𝑦! , … , 𝑔(𝑥* , 𝑦*))



Applications in cryptography and proof complexity 9

Bauer, Farshim and Mazaheri (CRYPTO 2018)

Collision-resistance of combiners for backdoored 
random oracles

Any proof system that can be efficiently simulated by randomized protocols (most notably, tree-like Res(⊕)) 
requires exponential size to refute bit-pigeonhole formulas featuring 𝑀 pigeons and 𝑁 holes for arbitrary 𝑀 > 𝑁.

Göös and Jain (RANDOM 2022) and Itsykson and Riazanov (CCC 2021)

Every tree-like cutting planes of the weak bit pigeon 
hole principle BPHP , 𝑀 > 𝑁 , has size2+(-!/#).

Hrubes and Pudlak (FOCS 2017)



Proof Outline

10



Baby version: One way communication 11

Send a messgae 𝐶

Bob outputs the collision 𝑖, 𝑗 ∈ [𝑀] such that 𝑥#𝑦# = 𝑥$𝑦$

Theorem 1

The one-way communication lower bound of the collision problem is Ω(𝑁!/&).

x = 𝑥!, … , 𝑥" ∈ √𝑁
" y = 𝑦!, … , 𝑦" ∈ √𝑁

"



Review: A Simple Protocol by Birthday Paradox 12

Let 𝑀 > 𝑁,Alice holds x = 𝑥!, … , 𝑥" ∈ √𝑁
"

and Bob holds y = 𝑦!, … , 𝑦" ∈
√𝑁

"
. the goal is find a collision, that is, distinct  𝑖, 𝑗 ∈ 𝑀 such that 𝑥#𝑦# = 𝑥$𝑦$ .

Collision Problems (uniform distribution)

The set of 𝑁!/& coordinates with same values

𝑁!/& coordinates Uniform Distribution

1 1 1 1
We want to prove this protocol is optimal !



Intuition: Normalize any protocol. 13

Fixed part

1 1 1 1

Pseudorandom part

Let 𝑋 be the random variable on inputs of Alice condition on message C.

There is a partition 𝑋 = ⋃# 𝑋# such that for each 𝑖, 𝑋# is a structured set and the expected size of fixed part is 𝑂(|𝐶|) .

Structured sets

𝑁!/& coordinates Uniform Distribution

1 1 1 1
If Alice sends 𝑁!/& coordinates with same values:

If Alice sends a message 𝑀:



Intuition: One way communication 14

Send 𝐶 with C = o(𝑁!/&)

By birthday paradox, Bob can’t find the collision with high
probability for each 𝑋# .

How to achieve such partition ?

Let 𝑋 be the random variable on inputs of Alice condition on message C.

There is a partition 𝑋 = ⋃# 𝑋# such that for each 𝑖, 𝑋# is a structured set and the expected size of fixed part is 𝑜(𝑁!/&) .

Fixed part

1 1 1 1

Pseudorandom part

Structured sets



Density-Restoring partition
Dense distribution [GLM+16]

Let 𝑫 be a random variable on √𝑁
"

.   We say that 𝑫 is dense on 𝐽 if for every subset 𝐼 ⊆ 𝐽 it holds 
that

H/(𝑫0 ) ≥ 𝛾 · |𝐼| · log√𝑁

and there is a 𝛼 ∈ √𝑁
" ∖2

such that Pr 𝑫 " ∖2 = 𝛼 = 1.

1 5 4 7

Fixed High block-wise min-entropy

Set 𝛾 = 1 − !
345√-

Lemma 1 [GLM+16,GPW17]

For any 𝑋 ⊆ 𝑁
2
, there is a partition 𝑋 = ⋃# 𝑋# such that for each 𝑖,

• 𝑋0$
# = 𝛼# and 𝑋# is dense on J ∖ 𝐼# .

• 𝐷/ 𝑋2∖0$
# ≤ 	𝐷/ 𝑋 − |𝐼#| + 	𝛿# 	 where 𝛿# = log |8|

| ⋃%&$ 8%|

Density function of 𝑋 ⊆ 𝑁
2
: 𝐷/ 𝑋 = 𝐽 ⋅ log√𝑁 − 𝐻/(𝑋)



Density-Restoring Partition

1. While 𝑋 ≠ ∅：
2. Initialize 𝑖 = 1.
3. Let 𝐼 ⊆ 	 𝐽 be a maximal subset (possibly 𝐼 = ∅	)	such that 𝑋0 has min-entropy rate 𝛾 and let 𝛼# ∈

√𝑁
0
	 be an outcome witnessing this: 	 Pr [𝑋0 	 = 𝛼#] 	> 	√𝑁:;|0|	.	

4. Output 𝑋#: = 	 {	𝑥 ∈ 	𝑋 ∶ 	 𝑥0 	 = 𝛼# 	} and 𝐼# = 𝐼. 

5. Update 𝑋 ← 	𝑋 ∖ 𝑋# and J = 𝐽 ∖ 𝐼 .

Density Restoring Partition:

Lemma 1 [GLM+16,GPW17]

For any 𝑋 ⊆ 𝑁
2
, there is a partition 𝑋 = ⋃# 𝑋# such that for each 𝑖,

• There is a 𝐼# ⊆ 𝐽 and 𝛼# ∈ 𝑁
0$ such that 𝑋0$

# = 𝛼# and 𝑋# is dense on 𝐽 ∖ 𝐼# .

• 𝐷/ 𝑋2∖0$
# ≤ 	𝐷/ 𝑋 − 𝐼# +	𝛿# 	where 𝛿# = log |8|

| ⋃%&$ 8%|



Proof of Lemma 1
Lemma 1 [GLM+16,GPW17]

For any 𝑋 ⊆ 𝑁
2
, there is a partition 𝑋 = ⋃# 𝑋# such that for each 𝑖,

• There is a 𝐼# ⊆ 𝐽 and 𝛼# ∈ 𝑁
0$ such that 𝑋0$

# = 𝛼# and 𝑋# is dense on 𝐽 ∖ 𝐼# .

• 𝐷/ 𝑋2∖0$
# ≤ 	𝐷/ 𝑋 − 𝐼# +	𝛿# 	 where 𝛿# = log |8|

| ⋃%&$ 8%|

Proof outline: The first part is proved by contradiction.
If 𝑋# is not dense on 𝐽 ∖ 𝐼# , then there is a non-empty set 𝐾 ⊆ 𝐽 ∖ 𝐼# and an outcome 𝛽 ∈ [√𝑁]^𝐾

violating the min-entropy condition.

Thus, the set 𝐼# ∪ 𝐾 ⊆ 𝐽 and 𝛼# , 𝛽 violating the min-entropy condition this contradicts the maximality 
of 𝐼# .



Proof of Lemma 1
Lemma 1 [GLM+16,GPW17]

For any 𝑋 ⊆ 𝑁
2
, there is a partition 𝑋 = ⋃# 𝑋# such that for each 𝑖,

• There is a 𝐼# ⊆ 𝐽 and 𝛼# ∈ 𝑁
0$ such that 𝑋0$

# = 𝛼# and 𝑋# is dense on 𝐽 ∖ 𝐼# .

• 𝐷/ 𝑋2∖0$
# ≤ 	𝐷/ 𝑋 − 𝐼# +	𝛿# 	 where 𝛿# = log |8|

| ⋃%&$ 8%|

Proof outline: The second part is proved by straightforward calculation:
𝐷/ 𝑋2∖0$

# = 𝐽 ∖ 𝐼# log√𝑁 − log |𝑋# |

≤ ( 𝐽 log 𝑁 − I# log √𝑁) − log(| ⋃$<# 𝑋$ | ⋅ 𝑁
:; 0$ )

= 𝐽 log 𝑁 − log 𝑋 − 1 − 𝛾 𝐼# ⋅ log√𝑁 + log(|𝑋|/| ⋃$<# 𝑋$ |) (𝛾 = 1 − !
345 -

)
≤ 𝐷/ 𝑋 − 𝐼# +	𝛿#

Density function of 𝑋 ⊆ 𝑁
2
: 𝐷/ 𝑋 = 𝐽 ⋅ log√𝑁 − 𝐻/(𝑋)



Proof of one way communication lower bound 19

Lemma 1 [GLM+16,GPW17]

For any 𝑋 ⊆ 𝑁
2
, there is a partition 𝑋 = ⋃# 𝑋# such that for each 𝑖,

• There is a 𝐼# ⊆ 𝐽 and 𝛼# ∈ 𝑁
0$ such that 𝑋0$

# = 𝛼# and 𝑋# is dense on 𝐽 ∖ 𝐼# .

• 𝐷/ 𝑋2∖0$
# ≤ 	𝐷/ 𝑋 − 𝐼# + 𝛿# where 𝛿# = log |8|

| ⋃%&$ 8%|

Density function of 𝑋 ⊆ 𝑁
2
: 𝐷/ 𝑋 = 𝐽 ⋅ log√𝑁 − 𝐻/(𝑋)

𝐸 𝐼# ≤ 𝐷/ 𝑋 − 𝐸[𝐷/ 𝑋2∖0$
# ] + 𝐸[𝛿#] ≤ 𝐷/ 𝑋 + 𝐸[𝛿#] ≤ 𝑀 ⋅ log√𝑁 − 𝐻/(𝑋) + 1

𝐸[𝐷/ 𝑋2∖0$
# ] ≥ 0 𝐸 𝛿# ≤ 1

Moreover, let 𝐽 = [𝑀] and 𝑝# =
|8$|
|8|

denote the probability of set 𝑋# ,

𝐸 𝛿# =t
#

𝑝# ⋅ log
|𝑋|

| ⋃$<# 𝑋$ |
= t

#

𝑝# ⋅ log
1

∑$<# 𝑝$
≤v

=

!
log

1
𝑥
𝑑𝑥 = 1



Proof of one way communication lower bound 20

𝑋

𝑌

𝑋!

𝑌

𝑋'
𝑋(
𝑋&

𝑋# is dense on [M] ∖ 𝐼#

By Lemma 1, 𝐸 𝐼# ≤ 𝑀 ⋅ log 𝑁 − 𝐻/ 𝑋 + 1 = 𝑀 ⋅ log 𝑁 − log |𝑋| + 1

By birthday paradox, if Bob can find collision with high probability in 𝑋, then 𝐸 𝐼# = Ω(𝑁!/&).

𝑋 ≤
𝑁

"

2+(-!/#)



Two way communication lower bound ?

21



Two way communication lower bound

Protocol tree of Π Partition of Truth Table

Π induces a partition of the truth table into at most 2|{| leaf rectangles. 
The leaf rectangles are in 1-to-1 correspondence with the leaves of the protocol tree.



𝑋

𝑌

Decomposition Algorithm

• Density-Restoring partition：

We further decompose the rectangle of each node into
dense rectangles (𝑋 is dense on 𝐽! and 𝑌 is dense on 𝐽' ).

Our decomposition algorithm has two process in each communication round:

1 5 4 7

Fixed High block-wise min-entropy

• Labeling process:

Labeling the inputs in each dense rectangle that Alice or Bob
can find the collision.

Claim: The total probability of labeled inputs should be
Ω 1 if Alice or Bob can find the collision with high
probability.



Density-Restoring Partition (Alice speaks)

Lemma 1 [GLM+16,GPW17]

For any 𝑋 ⊆ 𝑁
2! , there is a partition 𝑋 = ⋃# 𝑋# such that for each 𝑖,

• 𝑋0$
# = 𝛼# and 𝑋# is dense on J! ∖ 𝐼# .

• 𝐷/ 𝑋2!∖0$
# ≤ 	𝐷/ 𝑋 − |𝐼#| + 	𝛿# 	 where 𝛿# = log |8|

| ⋃%&$ 8%|

𝑋

𝑌

𝑋!

𝑌

𝑋'
𝑋(
𝑋&

𝑌 is dense on 𝐽' 𝑌 is dense on 𝐽' and 𝑋# is dense on 𝐽! ∖ 𝐼#

𝑋= is dense on 𝐽! and 𝑌 is dense on 𝐽'

Alice speaks,𝑋= = 𝑋 ∪ 𝑋∗

𝑋=

𝑌



Labeling Process(Alice speaks)

𝑋!

𝑌

𝑋'

𝑋(

𝑋&

𝑋!

𝑌

𝑋'

𝑋(

𝑋&

𝑌 is dense on 𝐽' and 𝑋# is dense on 𝐽 ∖ 𝐼#

Labeling process:
For each 𝑖, 𝑠# be the value of fixed part 𝐼# ∪ 𝐽? in 𝑋# .

We define 𝑌# 	 = 	 {𝑦	 ∈ 	𝑌 ∶ 	 𝑦# = 	𝑦$ 	 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖, 𝑗	 ∈ 	 𝐼# 	∪ 𝐽!? 	𝑤𝑖𝑡ℎ 𝑠#
# = 𝑠$

# }

Labeling the inputs in the rectangle 𝑋#×𝑌# if it don’t be labeled in previous rounds.

1 5 4 7

𝐽!? ∪ 𝐼# 𝐽! ∖ 𝐼#

The inputs of Bob that can find
the collision in fixed part of
Alice.



Proof of Lemma 2
Lemma 2

In the labeling process, for each 𝑖, the probability of labeled inputs in 𝑋!×𝑌 is at most
� · ( �! ∪�" # � �" #)

√�

We only consider the case: 𝐽? ∪ 𝐼# ⊆ 𝐽'

If 𝐽? ∪ 𝐼# ∩ 𝐽'? ≠ ∅,

• Either there is no collision in 𝐽? ∪ 𝐼# ∩ 𝐽'?

• Or if there is a collision in 𝐽? ∪ 𝐼# ∩ 𝐽'? , there
inputs must be labeled in previous rounds.

1 5 4 7

𝐽? ∪ 𝐼# 𝐽 ∖ 𝐼#

𝑋#

7 9 2 3

𝐽'?

𝑌

𝐽'



Proof of Lemma 2
Lemma 2

In the labeling process, for each 𝑖, the probability of labeled inputs in 𝑋!×𝑌 is at most
� · ( �! ∪�" # � �" #)

√�

Proof outline:

For any (𝑖, 𝑗) 	 ∈ 	 𝐼# 	∪ 𝐽!? 	𝑤𝑖𝑡ℎ 𝑠#
# = 𝑠$

# , since 𝑖, 𝑗 ∈ 𝐽' and 𝑌 is dense on 𝐽'

Pr 𝑦# = 𝑦$ ≤ '
√-

The lemma 2 holds by union bound.



Decomposition Algorithm

• Lemma 3: The expected size of fixed coordinates in leaf rectangles is at most O(CC Π ).
• Lemma 4: If the expected size of fixed coordinates in leaf rectangles is o 𝑁

!
# , Alice or Bob can find the

collision with 𝑜(1) probability.

Protocol tree of Π

In each communication iteration, for each dense
rectangle 𝑋×𝑌 is decomposed into 𝑋=×𝑌 and
𝑋!×𝑌 .

Doing density-restoring partition on 𝑋= and 𝑋! to
further decompose 𝑋=×𝑌 and 𝑋!×𝑌 into dense
rectangles.

Labeling the inputs in dense rectangles.

Assume Alice speaks,



Proof of Lemma 3

In each communication round, the density function increase at most 1.

By Lemma 1, in the density-restoring partition, for each 𝑖

𝐸[𝐷/ 𝑋2∖0$
# ] ≤ 	𝐸[𝐷/ 𝑋 ] − 𝐸[ 𝐼# } + 	𝐸[𝛿#]

the density function decreases at least 𝐸 𝐼# − 𝐸 𝛿# ≤ 𝐸# 𝐼# − 1.

Lemma 3: The expected size of fixed coordinates in leaf rectangles is at most O(CC Π ).

Density function is 0 at the beginning of protocol tree.

Proof outline via density increment argument:

Since the density function is always non-negative, the expected size of fixed coordinates = ∑ 𝐸[|𝐼#|] ≤ 2 ⋅ 𝐶𝐶(Π)

Protocol tree of Π
Density function is the average of density function of current all dense rectangles.



Proof of Lemma 4

Lemma 4: If the expected size of fixed coordinates in leaf rectangles is o 𝑁
!
# , then Alice or Bob can find the

collision with 𝑜(1) probability.

By Lemma 2, in each labeling process,

the probability of labeled inputs increase at most E[' · 0$ ∪2' ( : 2' (

-
] .

Proof outline:

Claim: the total probability of labeled inputs should be Ω 1 if Alice or Bob can find the collision with high probability.

Thus, let 𝐽! and 𝐽' be the random variables on fixed coordinates of Alice and Bob’s sides . Taking
summation in all communication rounds,

the total probability of labeled inputs is at most E[' · ( 2!
' (B 2(

' ()
√-

].

E ' · 2!
' (B 2(

' (

-
= Ω(1). E 𝑚𝑖𝑛{ 2, ' · 2!

' (B 2(
' (

-
} = Ω(1) .

E 𝑚𝑖𝑛{ 1, ' · 0$ ∪2' ( : 2' (

-
} .



Summary and Proof Outline

The proof outline is as follows:

Main Theorem

The communication lower bound of the collision problem is Ω(𝑁!/&).

Decomposition Algorithm: In each communication iteration, do density-restoring partition and labeling process for
each dense rectangle.

Lemma 3: The expected size of fixed coordinates in leaf rectangles is at most O(CC Π )

Proved by density increment arguments.

Lemma 4: The expected size of fixed coordinates in leaf rectangles is at least Ω 𝑁
!
# .

Proved by birthday paradox argument.



Other Applications and Open Problems
Main Theorem

The communication lower bound of the collision problem is Ω(𝑁!/&).

Numbers on forehead model?

This result will have important applications in proof complexity.

Thank you for listening J


